Brittle fracture in polycrystalline microstructures with the extended nite element method

نویسندگان

  • N. Sukumar
  • D. J. Srolovitz
  • T. J. Baker
چکیده

A two-dimensional numerical model of microstructural e ects in brittle fracture is presented, with an aim towards the understanding of toughening mechanisms in polycrystalline materials such as ceramics. Quasi-static crack propagation is modelled using the extended nite element method (X-FEM) and microstructures are simulated within the framework of the Potts model for grain growth. In the X-FEM, a discontinuous function and the two-dimensional asymptotic crack-tip displacement elds are added to the nite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by nite elements with no explicit meshing of the crack surfaces. Hence, crack propagation can be simulated without any user-intervention or the need to remesh as the crack advances. The microstructural calculations are carried out on a regular lattice using a kinetic Monte Carlo algorithm for grain growth. We present a novel constrained Delaunay triangulation algorithm with grain boundary smoothing to create a nite element mesh of the microstructure. The fracture properties of the microstructure are characterized by assuming that the critical fracture energy of the grain boundary (G c ) is di erent from that of the grain interior (Gi c). Numerical crack propagation simulations for varying toughness ratios G c =Gi c are presented, to study the transition from the intergranular to the transgranular mode of crack growth. This study has demonstrated the capability of modelling crack propagation through a material microstructure within a nite element framework, which opens-up exciting possibilities for the fracture analysis of functionally graded material systems. Copyright ? 2003 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance

This paper presents a systematical computational study of the effect of microstructures of materials reinforced with brittle hard particles on their fracture behavior and toughness. Crack growth in particle-reinforced materials (here, in high speed steels) with various artificially designed arrangements of brittle inclusions is simulated using microstructure-based finite element meshes and an e...

متن کامل

Finite Element-Based Model for Crack Propagation in Polycrystalline Materials∗

In this paper, we use an extended form of the finite element method to study failure in polycrystalline microstructures. Quasi-static crack propagation is conducted using the extended finite element method (X-FEM) and microstructures are simulated using a kinetic Monte Carlo Potts algorithm. In the X-FEM, the framework of partition of unity is used to enrich the classical finite element approxi...

متن کامل

Experimental and Numerical Investigation of Rock Dynamic Fracture

Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental...

متن کامل

Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation

Presented is a constitutive framework for modeling the dynamic response of polycrystalline microstructures, posed in a thermodynamically consistent manner and accounting for finite deformation, strain rate dependence of flow stress, thermal softening, thermal expansion, heat conduction, and thermoelastic coupling. Assumptions of linear and square-root dependencies, respectively, of the stored e...

متن کامل

A boundary element analysis of crack-propagation mechanism of micro-cracks in rock-like specimens under a uniform normal tension

In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions of the pre-existing micro-cracks, which can grow and propagate within a rock-like specimen. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003